

Power Maths calculation policy, LOWER KS2

The following pages show the Power Maths progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across Power Maths helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

Concreteis the 'doing' stage, using concrete objects to solve problems. It brings concepts to life by allowing children to handle physical objects

$2+1=3$

Pictorialis the 'seeing' stage, using representations of the objects involved in maths problems. This stage encourages children to make a mental connection between the physical object and abstract levels of understanding, by drawing or looking at pictures, circles, diagrams or models which represent the objects in the problem.

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

KEY STAGE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.

Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

Addition and subtraction: In Year 3 especially, the column methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and children should be encouraged at every stage to make choices about which methods to apply.
In Year 4, the steps are shown without such fine detail, although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns. By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Multiplication and division: Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35 . Children develop key skills to support multiplication methods: unitising, commutativity, and how to use partitioning effectively. Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving.
An understanding of partitioning allows children to extend their skills to multiplying and dividing 2and 3 -digit numbers by a single digit.
Children develop column methods to support multiplications in these cases.
For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3 , it is effective to partition 423 into 300,120 and 3 , as these can be divided by 3 using known facts.
Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

Fractions: Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount, and develop this with the aid of a bar model and other representations alongside. in Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than 1. In Year 4, children begin to work with fractions greater than 1.
Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100, and also with place value.

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

[^0]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.
Understanding
place value to

$\mathbf{1 , 0 0 0}$ | Unitise 100s, 10s and 1s to build 3-digit |
| :--- |
| numbers. |

3－digit number +1 s with exchange	Understand that when the 1 s sum to 10 or more，this requires an exchange of 10 ones for 1 ten． Children should explore this using unitised objects or physical apparatus．	Exchange 10 ones for 1 ten where needed． Use a place value grid to support the understanding．			Understand how to bridge by partitioning to the 1 s to make the next 10 ．
		H	T	0	
				ロッロロロ	
		H	T	0	\square
				gaga	
					$\begin{aligned} & 135+7=? \\ & 135+5+2=142 \end{aligned}$
		H	T	0	
		ㅇ…．．．．．		（80088）	Ensure that children understand how to add 1s bridging a 100 ．
		H	T	0	$198+5=$ ？
				［8	
		H	T	0	
			䦜	4日	
		$135+7=$	142		

Power Maths © Pearson 2019

Understand the exchange of 10 tens for 1 hundred.

Add by exchanging 10 tens for 1 hundred.

$184+20=204$

Understand how the addition relates to counting on in 10 s across 100.

$184+20=?$
I can count in 10s ... 194 ... 204
$184+20=204$
Use number bonds within 20 to support efficient mental calculations.
$385+50$
There are 8 tens and 5 tens.
That is 13 tens.
$385+50=300+130+5$
$385+50=435$

3-digit number + 2-digit number	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinking and adding of 1s, then 10s.	Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.

[^1]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

3-digit number + 2-digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent 154 +72 . Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$

Power Maths © Pearson 2019

3-digit number + 3-digit number, exchange required	Use place value equipment to enact the exchange required. There are 13 ones. I will exchange 10 ones for 1 ten.	Model the stages of column addition using place value equipment on a place value grid. (3738)	Use column addition, ensuring understanding of place value at every stage of the calculation. $126+217=343$ Note: Children should also study examples where exchange is required in more than one column, for example $185+318=$?

[^2]| Subtracting 100s | Use known facts and unitising to subtract multiples of 100. $\begin{aligned} & 5-2=3 \\ & 500-200=300 \end{aligned}$ | Use known facts and unitising to subtract multiples of 100. $\begin{aligned} & 4-2=2 \\ & 400-200=200 \end{aligned}$ | Understand the link with counting back in 100s.
 Use known facts and unitising as efficient and accurate methods.
 I know that $7-4=3$. Therefore, I know that $700-400=300$. |
| :---: | :---: | :---: | :---: |
| 3-digit number
 - 1s, no exchange | Use number bonds to subtract the 1 s . $214-3=?$ $\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$ | Use number bonds to subtract the 1 s . $319-4=?$ $\begin{aligned} & 9-4=5 \\ & 319-4=315 \end{aligned}$ | Understand the link with counting back using a number line.
 Use known number bonds to calculate mentally.
 476-4 =? $\begin{aligned} & 6-4=2 \\ & 476-4=472 \end{aligned}$ |

3-digit number -1s, exchange or bridging required	Understand why an exchange is necessary by exploring why 1 ten must be exchanged. Use place value equipment.	Represent the required exchange on a place value grid.$151-6=?$			Calculate mentally by using known bonds. $151-6=?$
		H	T	0	151-1-5 = 145
				0	
		H	T	0	
			聞	$\begin{aligned} & \text { gagan } \\ & \text { YYYYA } \\ & \text { K } \end{aligned}$	

3-digit number - 10s, exchange or bridging required	Use equipment to understand the exchange of 1 hundred for 10 tens.	Represent the exchange on a place value grid using equipment. $210-20=?$ I need to exchange 1 hundred for 10 tens, to help subtract 2 tens. $210-20=190$	Understand the link with counting back on a number line. Use flexible partitioning to support the calculation. $235-60=?$ $\begin{aligned} 235 & =100+130+5 \\ 235-60 & =100+70+5 \\ & =175 \end{aligned}$

Representing subtraction problems		Use bar models to represent subtractions. 'Find the difference' is represented as two bars for comparison. Team A Bar models can also be used to show that a part must be taken away from the whole.	Children use alternative representations to check calculations and choose efficient methods. Children use inverse operations to check additions and subtractions. The partwhole model supports understanding. I have completed this subtraction. 525 $-270=255$ I will check using addition. $\begin{array}{r} H T O \\ \hline 270 \\ +255 \\ \hline 525 \\ \hline \end{array}$
Year 3 Multiplication			

| Understanding
 equal grouping
 and repeated
 addition | Children continue to build understanding of
 equal groups and the relationship with
 repeated addition.
 They recognise both examples and
 nonexamples using objects. | Children recognise that arrays demonstrate
 Commutativity.
 Cepeated addition and multiplication. |
| :--- | :--- | :--- | :--- |
| This is 3 groups of 4. | | |
| This is 4 groups of 3. | | |

Using commutativity to support understanding of the timestables	Understand how to use times-tables facts flexibly. There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4=24$ to work out both totals.	Understand how times-table facts relate to commutativity. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	Understand how times-table facts relate to commutativity. I need to work out 4 groups of 7 . I know that $7 \times 4=28$ so, I know that 4 groups of $7=28$ and 7 groups of $4=28$.

Understanding and using $\times 3$, $\times 2, \times 4$ and $\times 8$ tables.	Children learn the times-tables as 'groups of', but apply their knowledge of commutativity. I can use the $\times 3$ table to work out how many keys. I can also use the $\times 3$ table to work out how many batteries.	Children understand how the $\times 2, \times 4$ and $\times 8$ tables are related through repeated doubling.	Children understand the relationship between related multiplication and division facts in known times-tables. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$
Using known facts to multiply 10s, for example 3×40	Explore the relationship between known times-tables and multiples of 10 using place value equipment. Make 4 groups of 3 ones. Make 4 groups of 3 tens. What is the same? What is different?	Understand how unitising 10s supports multiplying by multiples of 10 . 4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens. $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$	Understand how to use known times-tables to multiply multiples of 10 . $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$

Power Maths © Pearson 2019

Multiplying a 2-digit number by a 1 -digit number, expanded column method	Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $\begin{aligned} & 3 \times 24=? \\ & 3 \times 20=60 \\ & 3 \times 4=12 \end{aligned}$ $\begin{aligned} & 3 \times 24=60+12 \\ & 3 \times 24=70+2 \\ & 3 \times 24=72 \end{aligned}$	Understand that multiplications may require an exchange of 1 s for 10 s , and also 10 s for 100s.$4 \times 23=?$$4 \times 23=92$T 0 $\Theta \circlearrowleft$ 0 $\omega \ominus$ 00 $\omega \Theta$ 0 $\omega \ominus$ 00 $\omega \Theta$ 0$\begin{aligned} 5 \times 23 & =? \\ 5 \times 3 & =15 \\ 5 \times 20 & =100 \\ 5 \times 23 & =115 \end{aligned}$	Children may write calculations in expanded column form, but must understand the link with place value and exchange. Children are encouraged to write the expanded parts of the calculation separately. $\left\{\begin{array}{rl} 5 \times 28=? \\ \mathrm{~T} 0 & \\ \hline 28 & \\ \times \quad 5 & \\ \hline 40 & 5 \times 8 \\ \frac{100}{140} & 5 \times 20 \\ \hline \end{array}\right.$

Power Maths © Pearson 2019

Division

Power Maths © Pearson 2019

Understanding remainders	Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further. $\\|\\|\\|\\|\\|\\|\\|\\|\\|$	Use images to explain remainders. There are 13 sticks in total. There are 3 groups of 4, with 1 remainder.	Understand that the remainder is what cannot be shared equally from a set.

[^3]| 2-digit number divided by 1digit number, no remainders | Children explore dividing 2-digit numbers by using place value equipment. \square \square \square $48 \div 2=?$ | Children explore which partitions support particular divisions. | Children partition a number into 10 s and 1 s to divide where appropriate. $\begin{aligned} 60 \div 2 & =30 \\ 8 \div 2 & =4 \\ 30+4 & =34 \\ 68 \div 2 & =34 \end{aligned}$ |
| :---: | :---: | :---: | :---: |

[^4]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

2－digit number divided by 1 － digit number， with remainders	Use place value equipment to understand the concept of remainder． Make 29 from place value equipment． Share it into 2 equal groups． There are two groups of 14 and 1 remainder．	Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$ \square \square	Partition to divide，understanding the remainder in context． 67 children try to make 5 equal lines． $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \end{aligned}$ $17 \div 5=3$ remainder 2 $67 \div 5=13$ remainder 2 There are 13 children in each line and 2 children left out．

Year 4			Abstract
	Concrete	Pictorial	
Year 4			
Addition			

[^5]| Understanding numbers to $10,000$ | Use place value equipment to understand the place value of 4-digit numbers.
 4 thousands equal 4,000.
 1 thousand is 10 hundreds. | Represent numbers using place value counters once children understand the relationship between 1,000 s and 100s. $2,000+500+40+2=2,542$ | Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$
 Understand and read 4-digit numbers on a number line. |
| :---: | :---: | :---: | :---: |
| Choosing mental methods where appropriate | Use unitising and known facts to support mental calculations.
 Make 1,405 from place value equipment.
 Add 2,000.
 Now add the 1,000s.
 1 thousand +2 thousands $=3$ thousands $1,405+2,000=3,405$ | Use unitising and known facts to support mental calculations.
 I can add the 100s mentally. $200+300=500$
 So, $4,256+300=4,556$ | Use unitising and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \quad 200+300=500 \\ & 4,256+300=4,556 \end{aligned}$ |

[^6]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Representing additions and checking strategies		Bar models may be used to represent additions in problem contexts, and to justify mental methods where appropriate. $\begin{array}{r} T h H T O \\ \hline 799 \\ +\quad 574 \\ \hline 1373 \\ \hline 111 \end{array}$ I chose to work out $574+800$, then subtract 1. This is equivalent to $3,000+3,000$.	Use rounding and estimating on a number line to check the reasonableness of an addition. 1.000 $912+6,149=?$ I used rounding to work out that the answer should be approximately $1,000+6,000=7,000 .$
Year 4 Subtraction			

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

	I need to exchange a 10 for some 1s，but there are not any 10s here． $\text { 見 } \quad \rightarrow \text { 㗊照 }$		$\begin{array}{r} T h H T O \\ \hline 2489612 \\ -\quad 243 \\ \hline 2259 \\ \hline \end{array}$
Representing subtractions and checking strategies		Use bar models to represent subtractions where a part needs to be calculated． I can work out the total number of Yes votes using 5，762－2，899． Bar models can also represent＇find the difference＇as a subtraction problem．	Use inverse operations to check subtractions． I calculated $1,225-799=574$ ． I will check by adding the parts． The parts do not add to make 1，225． I must have made a mistake．

Power Maths © Pearson 2019
Copying permitted for purchasing institution only．This material is not copyright free．Pearson is not responsible for the quality，accuracy or fitness for purpose of the materials contained in the Word files once edited．

Year 4 Multiplication			
Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	Use unitising and place value equipment to understand how to multiply by multiples of 1, 10 and 100. $\begin{aligned} & 3 \times 4=12 \\ & 3 \times 40=120 \\ & 3 \times 400=1,200 \end{aligned}$	Use known facts and understanding of place value and commutativity to multiply mentally. $\begin{aligned} & 4 \times 7=28 \\ & 4 \times 70=280 \\ & 40 \times 7=280 \end{aligned}$ $\begin{aligned} & 4 \times 700=2,800 \\ & 400 \times 7=2,800 \end{aligned}$

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Understanding times-tables up to 12×12	Understand the special cases of multiplying by 1 and 0 . $5 \times 1=5$ $5 \times 0=0$	Represent the relationship between the $\times 9$ table and the $\times 10$ table. Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$	Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table I know that $7 \times 5=35$ sol know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ 3×7 $\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$

Understanding and using partitioning in multiplication	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2 . $4 \times 12=40+8$	Understand how multiplication and partitioning are related through addition. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 5=20 \\ & 12+20=32 \end{aligned}$ $4 \times 8=32$	Use partitioning to multiply 2-digit numbers by a single digit. $18 \times 6=?$ $\begin{aligned} 18 \times 6 & =10 \times 6+8 \times 6 \\ & =60+48 \\ & =108 \end{aligned}$
Column multiplication for 2- and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications. Make 4×136 using equipment. I can work out how many 1s, 10s and 100s. There are 4×6 ones... 24 ones There are 4×3 tens ... 12 tens There are 4×1 hundreds ... 4 hundreds $24+120+400=544$	Use place value equipment alongside a column method for multiplication of up to 3digit numbers by a single digit.	Use the formal column method for up to 3digit numbers multiplied by a $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ single digit. Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation. $\begin{array}{r} 23 \\ \times \quad 5 \\ \hline 15 \\ 100 \\ \hline 115 \end{array} \quad \begin{array}{r} 23 \\ \times \quad 5 \\ \hline 115 \end{array}$

[^7]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible fo the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Multiplying more than two numbers	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total. $\begin{aligned} & \underbrace{5 \times 2}_{1} \times 3=30 \\ & 10 \times 3=30 \end{aligned}$	Understand that commutativity can be used to multiply in different orders. $\begin{array}{r} 2 \times 6 \times 10=120 \\ 12 \times 10=120 \end{array}$ $\begin{array}{r} 10 \times 6 \times 2=120 \\ 60 \times 2=120 \end{array}$	Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times \underbrace{2 \times 5}_{1}= \\ & 12 \times 10=120 \end{aligned}$ So. $24 \times 5=120$
Year 4 Division			

Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4 . 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array.	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$

Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide. 8 ones divided into 2 equal groups 4 ones in each group 8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 hundreds in each group	Represent divisions using place value equipment. $9 \div 3=3$ 9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	Use known facts to divide 10 s and 100 s by a single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$
Dividing 2-digit and 3-digit numbers by a single digit by partitioning into 100s, 10s and 1 s	Partition into 10 s and 1 s to divide where appropriate. $39 \div 3=$? $39=30+9$ $\begin{gathered} 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into 100s, 10s and 1s using Base 10 equipment to divide where appropriate. $39 \div 3=?$ $39=30+9$ $\begin{gathered} 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into 100s, 10s and 1 s using a partwhole model to divide where appropriate. $\begin{aligned} & 142 \div 2=? \\ & 100 \div 2=50 \\ & 40 \div 2=20 \\ & 6 \div 2=3 \\ & 50+20+3=73 \end{aligned}$

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Power Maths calculation policy

Dividing 2-digit and 3-digit numbers by a single digit, using flexible partitioning	Use place value equipment to explore why different partitions are needed. $42 \div 3=?$ I will split it into 30 and 12, so that I can divide by 3 more easily. 98	Represent how to partition flexibly where needed. $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7 .	Make decisions about appropriate partitioning based on the division required. Understand that different partitions can be used to complete the same division.
Understanding remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24, and 1 that cannot be shared. (a) (B) B	Represent the remainder as the part that cannot be shared equally. $72 \div 5=14$ remainder 2	Understand how partitioning can reveal remainders of divisions. $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \end{aligned}$ $95 \div 4=23$ remainder 3

[^8]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible fo the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

[^0]: Power Maths © Pearson 2019

[^1]: Power Maths © Pearson 2019

[^2]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible fo
 the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

[^3]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible fo the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

[^4]: Power Maths © Pearson 2019

[^5]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only．This material is not copyright free．Pearson is not responsible fo the quality，accuracy or fitness for purpose of the materials contained in the Word files once edited．

[^6]: Power Maths © Pearson 2019

[^7]: Power Maths © Pearson 2019

[^8]: Power Maths © Pearson 2019

